A Review of the fossil Caudata of Europe

ZBYNĚK ROČEK

With 2 tables

Summary
A taxonomic and stratigraphic review of European fossil Caudata is given. Their earliest record (Marmorpeton, Middle Jurassic) is, at the same time, the oldest known tailed amphibian. Two families have Mesozoic-Tertiary occurrence. Some Tertiary representatives (e.g. Cryptobranchidae, some Salamandridae) have been largely distributed in Eurasia; however, due to climatic deterioration in the early Pliocene they disappeared from Europe. Contemporary European Caudata appeared as early as in the late Oligocene and, except for Mertensiella and Pleurodèles, they regained their original distribution after the Pliocene glaciations.

Zusammenfassung

The European fossil tailed amphibians can be traced back to the Middle Jurassic (Upper Bathonian; see Tab.1). The earliest record is represented by Marmorpeton EVANS, MILNER & MUSSET, 1988. At the same time, this is the earliest known unequivocal record of the Caudata in the world. It should be noted that Marmorpeton, though being the earliest known tailed amphibian, was already diversified into at least three distinct species (EVANS et al. 1988).
Hylaecobatrachus croyi is another early tailed amphibian, found in the Lower Cretaceous (Wealdian) deposits of Belgium. Because of its obviously neotenic nature (suggested by presence of five ossified branchial arches) its taxonomic status remains obscured, as it is the case with Marmorpeton.
Albanerpeton is classified either as belonging to the Prosirenidae or as a member of its own family Albanerpetontidae. Its stratigraphic occurrence is extensive. Although A. inexpectatum was found in the Miocene (France), A. megacephalus was reported already from the Bajocian (Middle Jurassic, Aveyron, S France). Thus, A. megacephalus belongs to the earliest Caudata, too. This species can be traced up to the Neocomian (Lower Cretaceous) of Spain; however, an undetermined Albanerpeton was recently reported also from the Maastrichtian (Upper Cretaceous) of Spain (ASTIBIA et al. 1991). It is worthy to note that a single atlas from the Bajocian of Aveyron (see above) de-
<table>
<thead>
<tr>
<th>Jurassic</th>
<th>Cretaceous</th>
<th>Paleocene</th>
<th>Eocene</th>
<th>Oligocene</th>
<th>Miocene</th>
<th>Pliocene</th>
<th>Pleistocene</th>
<th>Recent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Middle</td>
<td>Upper</td>
<td>Lower</td>
<td>Upper</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CRYPTOBRANCHIDAE
- Andrias scheuchzeri

PROSIRENIDAE
- Albemarpeton inexpectatum
- Albemarpeton megacephalus
cf. Albemarpeton sp.

PROTIDAE
- Proteus bavaricus
- Mioproteus caucasicus
- Mioproteus widei
- Orthopodya longa

BATRACHOSAURIDAE
- Palaeprotus klutii
- Palaeprotus gallicus
- Batrachosaurus idem.

DICAMPTODONTIDAE
- Burgmaniella wettsteini
- Cervieriella merentai
- Walterstoffiella wigleri

SALAMANDRIDAE
- Archonotriton basalicus
- Brachydrus moauchius
- Chelotriton oggyus
- Chelotriton paradoxus
- Chelotriton plicenicus
- Chelotriton robustus
- Chioglossa meini
cf. Europterus sp.
- Koallielula genzleri
- Koallielula sp.
- Megalotriton filholi
- Merseniella cf. M. caucasia
- Merseniella mera
- Oligosomia spinosa
- Palaepleurodeles hauffii
cf. Pleurodeles sp.
- Salamandra salamandra
- Salamandra saviensis
- Salamandrina terontiata
- Triturus cf. T. alpestris
- Triturus cristatus
- Triturus marmoratus
- Triturus montandoni
- Triturus opalinus
- Triturus rohresi
- Triturus vulgaris
- Triturus winteri
- Tylotriton weigelti

CAUDATA inc. sedis
- Hylaemobatrachus croyi
- Marmorpeton kermai
- Marmorpeton freemani
- Marmorpeton sp.
scribed by Seiffert (1969) and referred to *Albanerpeton* by Estes & Hoffstetter (1976) is so aberrant from all other Caudata that Fox & Naylor (1982) even suggested that it might represent a distinct order of Amphibia. However, the available information on its morphology is insufficient for determining its relationships (Milner 1988); for the time being it is maintained within the Caudata. Recently, Evans & Milner (1991) and Ensom et al. (1991) mentioned undetermined *Albanerpeton* from the Middle and Upper Jurassic of England. Jurassic findings of this amphibian were also reported from Portugal (Kühne 1968). It can be supposed that if the determination is correct, then *Albanerpeton* was persisting in Europe from the Jurassic until the Miocene, and further findings linking both species can be expected.

Although *Paleoprotoes* was reported from the Palaeocene of Cernay, France and Eocene of Geiseltal, Germany, the recent record of an undetermined representative of the family Batrachosauriidae from the Upper Jurassic of England (Ensom et al. 1991) is astonishing and indicates another group of Caudata that survived from the Mesozoic until Tertiary.

Besides Mesozoic (*Marmorerpeton*) and Mesozoic-Tertiary lineages (*Prosirenidae, Batrachosauriidae*), all other known European fossil Caudata are recorded from the Tertiary and later periods. Remarkable is *Andrias*, the largest tailed amphibian (length up to 1.35 cm), the earliest record of which is from the Upper Oligocene of Rott (Germany). Osteological comparison of fossil and recent forms (Westphal 1958, Böttcher 1987) revealed that there are no significant differences between them; the same holds true for both fossil and contemporary forms from Asia and North America. Since the earliest records of Cryptobranchidae are from the Palaeocene of Asia (Chikvadze 1982) and North America (Naylor 1981), and because of the presence of cryptobranchids in Japan (separated from the continental Asia in the Pliocene or early Pleistocene), one may suppose that the European findings are only a part of a formerly large and continuous distribution area of a single species. This is also supported by findings from central Asia (*A. karelcepeki* and *Zaisseria beliajevae* are synonyms of *A. scheuchzeri*; see Böttcher 1987). Low geographic and stratigraphic variation of *A. scheuchzeri* suggests that it is a morphologically very conservative species which disappeared from Europe due to the climatic deterioration in the early Pleistocene (Böttcher 1987, fig. 15).

Fossil Dicamptodontidae are known both from North America and Europe; today, they are extinct in Europe. *Geyeriella* and *Bargmannia* are closely related and their affinities to the Dicamptodontidae seem to be beyond any doubt. This is not the case with *Wolterstorffia* the assignment of which to Dicamptodontidae remains doubtful (Estes 1981: 49).

Some Salamandridae have a similar distributional history as *Andrias*. Besides *Koalliella* which is the earliest European representative of this family, recorded from the Upper Palaeocene of Cernay, France and Lower Eocene of Dormaal, Belgium (Estes, Hecht & Hoffstetter 1967, Godinot et al. 1978), there are three genera closely related with each other, namely *Brachyceurus, Cheloriton* and *Tylototriton*. They inhabited Europe, undoubtedly as a part of larger distribution area, until the late Pliocene and then they withdrew to south-east Asia, surviving there only by the latter genus. *Palaecopleurodeles* and *Pleurodeles* are representatives of a lineage which was closely related to the *Brachyceurus / Chelopithecus / Tylototriton* lineage. Although *Palaecopleurodeles* was recorded already from the Oligocene, its probable descendant *Pleurodeles* was able to survive in Europe until today, in spite of the Pleistocene climatic changes. However, it was not able to regain the original distribution of its ancestor.
Salamandrid genera that are living in Europe today are evidenced with certainty in this area as early as in the Miocene (except for *Europsctus*; see Sanchiz 1977). This early origin implies that they had to survive Miocene glaciations either in Mediterranean refugia from which they expanded again in Holocene times (not in the case of *Mertensiella* which remained restricted to Caucasus, and *Pleurodeles*; see above) or, as suggested by Pleistocene records of Caudata in Poland (Młynarski & Szynlak 1989), the distribution of Caudata could fluctuate in close correlation with changes in the extent of continental glaciation. The Tertiary-Holocene occurrence may be exemplified in *Salamandra* which is recorded (though with certain doubts) as early as in the Upper

CRYPTOBANCHIDAE Fitzinger, 1826
Andrias Schiödte, 1837
Andrias scheuchzeri (Holl, 1831)

PROSERENIDAE Estes, 1969
Albanerpeton Estes & Hoffstetter, 1976
Albanerpeton inexpectatum Estes & Hoffstetter, 1976
Albanerpeton megacephalus (Costa, 1864)

PROTEIDAE Hogg, 1838
Proteus Laurenti, 1768
Proteus bavaricus Brunner, 1956
Microtus Estes & Darevsky, 1978
Microtus caucasica Estes & Darevsky, 1978
Microtus yarezi Estes, 1984
Orthophis v. Meyer, 1845
Orthophis longa v. Meyer, 1845

BISTRACHOSAUROIDIDAU Auffenberg, 1956
Palaeoerpeton Herre, 1935
Palaeoerpeton klati Herre, 1935
Palaeoerpeton gallicus Estes, Hecht & Hoffstetter, 1967

Bistrachosauroididae indet.

DICAMPTODONTIDAE (Thien, 1958)
Bargmannia Herre, 1955
Bargmannia weissmanni Herre, 1955
Geyeriella Herre, 1950
Geyeriella mertensi Herre, 1990
Walterstorffiella Herre, 1950
Walterstorffiella wigleri Herre, 1950

SALAMANDRIDAEGRAY, 1825
Archeateron v. Meyer, 1860
Archeateron basilicus (v. Meyer, 1859)
Brachyosaurus v. Meyer, 1860
Brachyosaurus noachicus (Goltz, 1831)
Cheilotriton Pomer, 1853
Cheilotriton oggyius (Goltz, 1831)
Cheilotriton paradoxus Pomer, 1853
Cheilotriton pliocenica Ballon, 1989
Cheilotriton robustus Westphal, 1980
Chiroglossa Bocage, 1864
Chiroglossa meinii Estes & Hoffstetter, 1976
Europsctus Gené, 1838
cf. Europsctus sp.

Koalitella Herre, 1950
Koalitella genceli Herre, 1950
Koalitella sp.
Megalotriton Zittel, 1890
Megalotriton filholi Zittel, 1890
Mertensiella Wolterstorff, 1925
Mertensiella cf. M. caucasica
Mertensiella mero Hordoba, 1984
Oligosoma Navas, 1922
Oligosoma spinosa Navas, 1922
Paleoerpetoleodes Herre, 1941
Paleoerpetoleodes hauffi Herre, 1941
Pleurodeles Michaeli, 1830
Pleurodeles sp.
Salamandra Laurenti, 1768
Salamandra salamandra (Linnaeus, 1758)
Salamandra sasaniensis Lartet, 1851
Salamandra Fitzinger, 1826
Salamandra terdogitana (Lacépède, 1788)
Trirurus Rafinesque, 1815
Trirurus cf. T. alpestris
Trirurus cristatus (Laurenti, 1768)
Trirurus marmoreus (Laurenti, 1768)
Trirurus montandoni (Bohenger, 1880)
Trirurus opalinus (v. Meyer, 1851)
Trirurus rohri Herre, 1955
Trirurus vulgaris (Linnaeus, 1758)
Trirurus wintershaffi Linnaeus, 1950
Tylotriton Anderson, 1871
Tylotriton weigeli Herre, 1935

CAUDATA inc. sedis
Hyloschistobatrachus Dollo, 1884
Hyloschistobatrachus croysi Dollo, 1884
Marmorpeton Evans, Milner & Mussett, 1988
Marmorpeton kermacki Evans, Milner & Mussett, 1988
Marmorpeton freemani Evans, Milner & Mussett, 1988
Marmorpeton sp.

Tab. 2. Systematic review of European fossil caudata.
Systematische Übersicht der fossilen Salamander Europas.

54
Eocene or Lower Oligocene. The phylogenetic continuity of *S. sansaniensis* and *S. salamandra* is very probable. A similar case is the Proteidae, which are well documented by *Mioproteus* from the Miocene through the uppermost Lower Pleistocene (Młynarski & Szynclari 1989); *Proteus* seems to be the contemporary survivor of this lineage. The number of *Triarius* species will probably be reduced in the future because *T. opalinus*, *T. roharsi* and *T. wintershofti* are either larvae or insufficiently preserved specimens. The same holds true for some other salamandrids (e.g. *Ologosemia* which is probably a synonym of *T. marmoratus*; Estes 1981: 84).

It can be summarized that at present, 45 species or distinct but specifically undetermined forms belonging to at least 26 genera (tab. 2) of tailed amphibians are known as fossils in Europe. At least 4 of them, belonging to 2 genera (including the earliest ones), can be categorized only as family incertae sedis. Only two families of the European Caudata have Cretaceous-Tertiary occurrence (Prosirenidae, Batrachosauroididae). The Tertiary European Caudata were partly affected by climatic changes at the beginning of the Pleistocene (their contemporary distribution in north Africa - south Iberian Peninsula or south-east Asia indicates their original ecological requirements), but some of them were considerably resistant to Pleistocene glaciations.

References

Manuskripteingang: 20. April 1993

Author’s adress:
Dr. Zbyněk Roček, Department of Palaeontology, Institute of Geology, Czech Academy of Sciences, Rozvojová 135, CZ-16500 Praha 6 - Suchdol, Czech Republic.